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Abstract
The secondary prevention trials of Alzheimer’s disease (AD) require an enrichment strategy to recruit individuals with immi-
nent cognitive decline at the preclinical stage. Previously, we demonstrated a variant neural correlates of episodic memory 
(EM) function in apolipoprotein E (APOE) ε4 carriers. Herein, we investigated whether this variation was associated with 
longitudinal EM performance. This 3-year longitudinal study included 88 normal elderly subjects with EM assessment and 
resting-state functional MRI data at baseline; 48 subjects (27 ε3 homozygotes and 21 ε4 carriers) underwent follow-up 
EM assessment. In the identified EM neural correlates, multivariable regression models examined the association between 
hippocampal functional connectivity (HFC) and longitudinal EM change. Independent validation was performed using the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. At baseline, the EM neural correlates were characterized in 
the Papez circuit regions in the ε3 homozygotes, but in the sensorimotor cortex and cuneus in the ε4 carriers. Longitudinally, 
the ε4 carriers exhibited a negative association of the baseline HFC strength in the EM neural correlates with annual rate of 
EM change (R2 = 0.25, p = 0.05). This association also showed a trend in the ADNI dataset (R2 = 0.42, p = 0.06). These results 
indicate that hippocampal hyperconnectivity in the variant EM neural correlates is associated with imminent EM decline in 
ε4 carriers, which may serve as a promising enrichment strategy for secondary prevention trials of AD.
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Introduction

Alzheimer’s disease (AD) begins with a decades-long pre-
clinical stage in which AD pathological process insidiously 
arise before detectable cognitive impairment [1, 2]. This pre-
clinical stage is the focus of current clinical trials because 
the pathological process could be potentially reversed by 
disease-modifying treatment [3]. To optimize clinical effi-
cacy of the trials, an enrichment strategy is required to 
enroll a sample of cognitively normal (CN) individuals 
with greater cognitive decline over the duration of the trial. 
Unfortunately, such a strategy remains to be determined in 
current clinical trials of AD. For example, although the beta-
amyloid (Aβ) plaque biomarkers serve as the defining sig-
nature of AD, a large proportion of Aβ-positive individuals 
maintain normal cognitive function even over a decade [4, 
5]. These observations suggest that the enrichment using Aβ 
biomarker alone is insufficient to observe a treatment effect 
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in AD prevention trials. A supplementary enrichment strat-
egy that is strongly predictive of imminent cognitive decline 
in CN population is needed to increase clinical efficacy of 
AD prevention trials.

Relative to Aβ plaque, brain network dysfunction appears 
to be an upstream event in AD pathophysiology and links 
more closely to cognitive decline [6]. First, network hyper-
synchrony may emerge as early as at the preclinical stage 
[7–9], even before the detectable Aβ pathology [10]. Second, 
brain network dysfunction and Aβ pathology may promote 
each other. Greater neural activity increases Aβ burden [11, 
12], and alternatively, pathological Aβ accumulation is asso-
ciated with neuronal hyperactivity and network excitability 
[13, 14]. Third, antiepileptic treatments against network dys-
function could reverse synaptic and memory deficits in AD 
rodent models [15], and improve cognition in amnestic mild 
cognitive impairment (aMCI) subjects [16, 17]. These evi-
dences indicate that brain network dysfunction closely con-
nected with both Aβ pathology and cognitive impairment in 
AD pathological cascade, and thus may serve as a potential 
strategy to enrich the CN population in AD prevention trials.

Integration of genetic information into the enrichment 
strategy may further facilitate the trial efficacy, as genetic 
variation accounts for 70% risk of AD [18]. To date, the 
apolipoprotein E (APOE) ε4 allele is the strongest genetic 
risk factor for late-onset AD, and exacerbates Aβ accumu-
lation [19], brain network dysfunction [20], and episodic 
memory (EM) decline [21] in CN cohorts. In an earlier 
cross-sectional study, we identified that the ε4 carriers 
exhibit a variant neural correlates of EM function in the 
sensorimotor cortex and cuneus but not in the Papez cir-
cuit regions as the ε3 homozygotes, and hypothesized that 
hyperactivity in the variant EM neural correlates advances 
longitudinal EM decline in ε4 carriers [22]. Therefore, this 
study followed up these subjects to examine the associa-
tion between baseline hippocampal functional connectiv-
ity (HFC) in the EM neural correlates and longitudinal EM 
change by the APOE allele. This association was further 
validated by the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset. Altogether, this study demonstrates that 
higher HFC strength in the variant EM neural correlates is 
associated with greater EM decline later in life. It may serve 
as a supplementary enrichment strategy to be used jointly 
with the established AD pathologies for secondary preven-
tion trials of AD.

Methods

Subjects

Subjects were from the Nanjing Aging and Dementia Study 
(NADS). The NADS is characterized by a non-demented 

longitudinal cohort enriched for the APOE allele status, with 
the aim to enhance the understanding of the early develop-
ment of AD. Please refer to Supplemental Method S1 for 
subject recruitment and inclusion criteria. As a result, this 
study included 88 subjects, including 43 APOE ε3 homozy-
gotes and 45 APOE ε4 carriers (with APOE ε3ε4 or ε4ε4 
genotype), for baseline analysis. Among of them, 27 APOE 
ε3 homozygotes and 21 APOE ε4 carriers participated in the 
follow-up neurocognitive tests at an average of 3.09 years 
after the baseline visit. They were cognitively normal at the 
follow-up visits. Please refer to Figure S1 for the subject 
inclusion process at baseline and follow-up. The Affiliated 
ZhongDa Hospital of Southeast University Research Ethics 
Committee approved this study. Written informed consents 
were obtained from each individual.

Neurocognitive tests

Each subject’s cognitive function was examined at both 
baseline and follow-up visits. The EM tests consisted of the 
Auditory Verbal Learning Test, Logical Memory Test, and 
Rey-Osterrieth Complex Figure Test [23]. Each test’s 20-min 
delayed recall score measured the subject’s EM function. To 
reduce measurement error and potential type I error related 
to multiple comparisons, we calculated the EM Composite 
Scores by first converting raw Scores to z-Scores using the 
mean and standard deviation of the sample for each test and 
then averaging the z-Scores of the three EM tests.

MRI image acquisition, preprocessing, 
and construction of HFC networks

We acquired rs-fMRI and high-resolution T1-weighted ana-
tomical images at baseline, using a Siemens Verio 3.0 Tesla 
scanner (Siemens, Erlangen, Germany) with a 12-chan-
nel head coil. The rs-fMRI data were conventionally pre-
processed using the Analysis of Functional NeuroImages 
(AFNI) software (https://​afni.​nimh.​nih.​gov/​afni) and MAT-
LAB programs (The MathWorks, Inc., Natick, MA, USA) 
[24]. Please refer to Supplemental Method S2 for MRI scan 
parameter and preprocessing pipeline.

The construction of HFC networks has been described 
in our earlier paper [22]. Briefly, the bilateral hippocampus 
regions of interest (ROIs) were extracted from the automated 
anatomical labeling (AAL) template [25]. Voxelwise cor-
relation coefficients (CC) of the ROIs with the whole brain 
were calculated and then underwent a Fisher transforma-
tion to improve normality [m = 0.5ln (1 + CC)/(1−CC)]. The 
obtained HFC values were subjected to a voxelwise gray 
matter volume correction to control anatomical variation 
influence on the HFC. Finally, the gray matter corrected 
HFC values were smoothed with a 6-mm Gaussian kernel.

https://afni.nimh.nih.gov/afni
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Statistical analysis

Demographic and clinical data

Independent two-sample t test and Chi-square test compared 
quantitative and qualitative demographic data, respectively, 
between the APOE ε3 homozygous and APOE ε4 carrier 
groups. The EM Scores were analyzed using the mixed-
design analysis of variance (ANOVA), including time as the 
within-subjects factor and group as the between-subjects fac-
tor, to test if the EM Scores differed across times or groups. 
The statistical significance was set at p < 0.05.

Identification of EM neural correlates at baseline

We identified the EM neural correlates separately for the 
APOE ε3 homozygous group and ε4 carrier group, as pre-
viously described, by the voxelwise multivariable linear 
regression model below (3dRegAna, AFNI):

where mi is the HFC value of the i th voxel. β0 is intercept of 
the fitting line. EM is the EM composite z-Score. Age, edu-
cation years ( edu ), sex, and family history ( FH ) are demo-
graphic covariates in the model. � denotes random errors. 
We identified clusters showing significant β1 as the EM neu-
ral correlates. These EM neural correlates were employed 
as ROIs in the longitudinal analysis. To correct for multiple 
comparisons on the statistical maps, we used the 3dFWHMx 
to estimate the smoothing parameter and 3dClustSim to cal-
culate the cluster size threshold (AFNI version 16.2.06). The 
significance level was set at α ≤ 0.05, determined by voxel-
wise p = 0.05 and cluster size ≥ 5504 mm3.

Longitudinal analysis

Longitudinal analysis also was performed separately for 
APOE ε3 homozygous and ε4 carrier groups. We examined 
the association between the baseline HFC and the annual 
rate of change in EM Composite Score, as shown below:

where ΔEMan. , the annual rate of change in EM Compos-
ite Score, is defined as the EM Composite Score at follow-
up minus that at baseline divided by the follow-up interval 
between the two visits. HFCBL is the mean HFC in the EM 
neural correlates identified at the baseline analysis. EMBL is 
the EM Composite Score at baseline. In addition, a univari-
ate regression analysis between the baseline HFC strength 
and the annual rate of change in EM Composite Score was 

(1)
mi = β0 + β1EM + β2age + β3edu + β4sex + β5FH + �

(2)

ΔEMan. =β0 + β1HFCBL + β2EMBL + β3age

+ β4edu + β5sex + β6FH + �

performed to examine if the two variables was still corre-
lated without other covariates.

Independent validation by the ADNI dataset

We found a total of 84 cognitively normal elderly subjects 
who underwent rs-fMRI scan in the ADNI dataset. Among 
of them, 14 eligible APOE ε4 carriers were included with 
the following criteria: (1) their ages were younger than 
80 years; (2) they were right-handers; (3) their APOE geno-
types were APOE ε3ε4 or ε4ε4; (4) they completed all neu-
ropsychological episodic memory tests within one visit; (5) 
they underwent 1-year follow-up visits; (6) no significant 
image artifacts in rs-fMRI data. This sample size is com-
parable to other ADNI studies using the cognitively normal 
ε4 carriers [26, 27]. With respect to the ADNI dataset, data 
used in the preparation of this article were obtained from the 
ADNI database (adni.loni.usc.edu). The ADNI was launched 
in 2003 as a public–private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial MRI, positron emis-
sion tomography (PET), other biological markers, and clin-
ical and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment 
(MCI) and early AD. For up-to-date information, see www.​
adni-​info.​org.

According to the ADNI protocol, the EM tests consists of 
the Rey Auditory Verbal Learning Test and Logical Mem-
ory Test; both tests are performed at baseline and annual 
follow-up visits. To control the potential practice effect due 
to repeated neurocognitive measures [28], the test scores at 
the first-year follow-up visit were applied in this study. The 
MRI data processing was identical to that in the NADS as 
described above.

Paired-samples t tests compared EM test scores between 
baseline and follow-up visits. We applied Eq. (1) to identify 
the EM neural correlates in the ADNI ε4 carriers. The mean 
HFC value of the regions showing significant EM neural cor-
relates was extracted; then, it was input in Eq. (2) as HFCBL 
to test its relationship with longitudinal EM performance.

Results

Subjects’ characteristics

As Table 1 shows, the APOE ε3 homozygous and ε4 car-
rier groups in NADS dataset at baseline were matched in 
age, sex, education years, family history distribution, and 
EM performances. Table 2 illustrates characteristics of 
the subjects who participated in the follow-up study. The 
mean follow-up interval was 3.09  years for all NADS 

http://www.adni-info.org
http://www.adni-info.org
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subjects. The ε4 carrier group was significantly younger 
(t46 = − 2.18, p = 0.03) and had a longer follow-up interval 
(t46 = 5.22, p < 0.01) relative to the ε3 homozygous group. 
The mixed-design ANOVA demonstrated significant main 
effects of time in Auditory Verbal Learning Test (F1 = 23.10, 
p < 0.001) and Logical Memory Test (F1 = 7.20, p = 0.01) 
scores, respectively, which the scores at follow-up were sig-
nificantly lower than those at baseline. No significant inter-
action between time and group was found in the three EM 
tests.

The EM neural correlates in APOE ε3 homozygotes 
and ε4 carriers

The bilateral HFC patterns are provided in Fig. 1. The EM 
neural correlates of each group are illustrated in Fig. 2 and 
Table S1. The EM neural correlates difference between the 
NADS APOE ε3 homozygous and ε4 carrier groups was sta-
tistically demonstrated in our earlier paper [22]. Briefly, rela-
tive to the ε3 homozygous group whose positive EM neural 
correlates were characterized in the Papez circuit regions 
including the bilateral thalamus and medial temporal lobe 
(MTL), the ε4 carrier group exhibited positive EM neural 
correlates beyond the Papez circuit regions including the 
bilateral cuneus and premotor cortex / sensorimotor cortex / 
superior parietal lobule. Similar to the difference above, the 
ADNI APOE ε4 carrier group showed negative, rather than 
positive, EM neural correlates in the MTL. Their positive 
EM neural correlates were primarily in the right inferior 
parietal lobule and bilateral precuneus / posterior cingulate 
cortex (Fig. S2).

Association of the HFC strength at baseline 
with longitudinal EM change

In the ε4 carriers, the mean HFC strength in the EM neural 
correlates at baseline negatively correlated with the annual 
rate of change in the EM Composite Score after controlling 
for baseline EM Score and demographic covariates includ-
ing age, education years, sex, and family history (R2 = 0.25, 
p = 0.05, Fig. 3A and Table 3). Please note that the R2 value 
above was calculated by correlating residual HFC with resid-
ual EM Composite Score after regressing out effects of other 
variables in the model, rather than the R2 value of the full 
model. In addition, the univariate regression analysis with-
out demographic covariates also demonstrated the negative 
correlation between the baseline HFC and the annual rate 
of change in the EM Composite Score (R2 = 0.37, p < 0.01, 
Fig. S3A). These findings indicate that higher HFC strength 
at baseline is associated with a greater rate of decline in 
the EM performance during the follow-up period. By con-
trast, such a correlation was not observed in the APOE ε3 
homozygotes. In addition, we found no significant correla-
tion between the baseline HFC and longitudinal EM per-
formance in the brain region outside of the EM neural cor-
relates in the ε4 carriers.

Independent validation by the ADNI dataset

The associations described above were independently tested 
by the ADNI dataset, although the ADNI subjects relative 

Table 1   Demographic and 
neurocognitive information of 
the NADS subjects at baseline

The p values were obtained by independent two-sample t tests for quantitative data, or by Chi-square test 
for qualitative data
NADS Nanjing Aging and Dementia Study, SD standard deviation, No. number, MMSE Mini-Mental State 
Examination, MDRS-2 Mattis Dementia Rating Scale-2, AVLT–20-min DR auditory verbal learning test–
20-min delayed recall, LMT–20-min DR logical memory test–20-min delayed recall, CFT–20-min DR Rey-
Osterrieth Complex Figure test–20-min delayed recall

APOE ε3ε3
(n = 43)

APOE ε4+
(n = 45)

p value

Age, mean (SD), years 68.60 (6.60) 66.76 (6.23) 0.18
Male, No. (%) 23 (53.49) 21 (46.67) 0.75
Education, mean (SD), years 12.38 (3.18) 11.72 (2.89) 0.31
Positive family history, No. (%) 10 (23.26) 12 (26.67) 0.89
MMSE, mean (SD) 28.65 (1.02) 28.33 (1.30) 0.20
MDRS-2, mean (SD) 138.26 (2.70) 138.04 (3.06) 0.73
AVLT–20-min DR, mean (SD) 7.60 (1.94) 7.67 (2.03) 0.88
LMT–20-min DR, mean (SD) 8.57 (2.65) 8.67 (2.51) 0.86
CFT–20-min DR, mean (SD) 18.20 (6.15) 18.63 (4.94) 0.71
Composite memory z-Score, mean (SD) 0.47 (0.58) 0.51 (0.45) 0.73
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to the NADS subjects were significantly older (t33 = 2.86, 
p = 0.01), had higher education years (t33 = 5.88, p < 0.01), 
and had a higher proportion of a family history (χ2 = 8.41, 
p < 0.01, Table 2). In the positive EM neural correlates of 
the ADNI ε4 carriers, the baseline HFC strength showed 
a negative trend with the annual rate of change in the EM 
Composite Score after controlling for baseline EM Score 
and demographic covariates (R2 = 0.42, p = 0.06, Fig. 3B and 
Table S2). This negative correlation was also demonstrated 
in the univariate regression analysis (R2 = 0.49, p < 0.01, Fig. 
S3B).

Discussion

Following our earlier cross-sectional study identifying a 
variant EM neural correlates in the sensorimotor and cuneus 
in CN individuals carrying the APOE ε4 allele, this follow-
up study further demonstrates that hippocampal functional 
hyperconnectivity in the variant EM neural correlates is 
associated with longitudinal EM decline in ε4 carriers. This 
finding was independently validated by the ADNI dataset. 
These results indicate the EM neural correlates as a brain 
network mechanism linking APOE polymorphism and longi-
tudinal EM change. Clinically, these results pave a new way 

Table 2   Demographic and neurocognitive data of subjects participated in the longitudinal study

Please note that the AVLT and LMT used in the NADS were different from those used in the ADNI. In addition, the follow-up interval was 
approximate 3 years in NADS, which was about 1 year in ADNI
NADS Nanjing Aging and Dementia Study, ADNI Alzheimer’s Disease Neuroimaging Initiative, SD standard deviation, No. number, n/a non-
applicable, ANOVA analysis of variance, AVLT–20-min DR auditory verbal learning test–20-min delayed recall, LMT–20-min DR logical mem-
ory test–20-min delayed recall, CFT–20-min DR Rey–Osterrieth Complex Figure test–20-min delayed recall
*Indicate significant differences among groups
a Independent two-sample t tests and Chi-square tests compared quantitative and qualitative demographic data, respectively, between the NADS 
APOE ε3ε3 and NADS APOE ε4+ groups
b The mixed-design ANOVA obtained main effects of time among the four groups
c Independent two-sample t tests compared demographic data between ADNI APOE ε4+ group and NADS APOE ε4+ group
d Paired-samples t tests compared episodic memory performances between follow-up and baseline visits within ADNI APOE ε4+ subjects

NADS dataset

APOE ε3ε3 (n = 27) APOE ε4+ (n = 21) p valuea

Age, mean (SD), years 70.11 (5.23) 66.62 (5.84) 0.03*
Male, No. (%) 12 (44.4) 11 (47.6) 0.59
Education, mean (SD), years 12.78 (3.29) 11.98 (2.74) 0.37
Positive family history, No. (%) 3 (11.1) 6 (28.6) 0.24
Follow-up interval, mean (SD), years 2.81 (0.32) 3.44 (0.52) 0.00*

APOE ε3ε3
Baseline

APOE ε3ε3
Follow-up

APOE ε4+
Baseline

APOE ε4+
Follow-up

p
valueb

AVLT–20-min DR, mean (SD) (range 0–12) 7.37 (1.84) 5.89 (1.76) 7.43 (1.78) 6.24 (1.81) 0.00*
LMT–20-min DR, mean (SD) (range 0–20) 8.37 (2.62) 7.54 (2.26) 8.48 (2.67) 7.29 (2.27) 0.01*
CFT–20-min DR, mean (SD) (range 0–36) 18.50 (5.78) 20.65 (7.84) 18.98 (4.44) 19.36 (6.02) 0.15

ADNI dataset

APOE ε4+ (n = 14) p valuec

Age, mean (SD), years 71.95 (4.67) 0.01*
Male, No. (%) 5 (35.7) 0.33
Education, mean (SD), years 17.14 (2.2) 0.00*
Positive family history, No. (%) 11 (78.6) 0.00*
Follow-up interval, mean (SD), years 1.23 (0.45) n/a

Baseline Follow-up p valued

AVLT–20-min DR, mean (SD) (range 0–15) 7.21 (3.26) 6.93 (4.27) 0.70
LMT–20-min DR, mean (SD) (range 0–25) 13.50 (3.13) 13.36 (5.15) 0.88
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to identify CN individuals with imminent EM decline over 
a brief follow-up period.

Identification of CN individuals with imminent cognitive 
decline remains a major challenge in conducting second-
ary prevention trails for AD. The APOE ε4 allele alone has 
limited utility to predict cognitive decline on an individual 
level [29], but may influence cognitive function through a 
variety of AD-related pathologies including Aβ, tau, and 
neurodegeneration [30, 31]. Our findings suggest that net-
work hypersynchrony, measured by hippocampal functional 
hyperconnectivity herein, promotes longitudinal EM decline 
in ε4 carriers. Recently, network hypersynchrony was identi-
fied as an upstream pathophysiology that drives brain hyper-
activity and cognitive impairment in the AD continuum [32]. 
Particularly, hippocampal hyperactivity, arising from the 
preclinical stage of AD [33], not only contributes to faster 
cognitive decline in non-demented individuals [34] but also 
correlates with longitudinal Aβ accumulation and greater 
cortical thinning in CN cohorts [35]. Our findings resonate 
with the findings from these studies and suggest the com-
bination of hippocampal network hypersynchrony with the 
APOE ε4 allele as a pathogenic mechanism in advancing 
AD progression at the preclinical stage; this combination 
could be employed as a potential tool to indicate the risk of 
cognitive decline in CN individuals.

The association of network hypersynchrony with EM 
decline is detected in the variant EM neural correlates in 
ε4 carriers. Both our and other cross-sectional studies have 
documented that, relative to ε3 homozygotes who preferably 
use the acknowledged EM neural substrates involving the 
Papez circuit and prefrontal cortex, ε4 carriers may recruit 
structurally different brain regions to perform EM function 
[36–40]. This many-to-one structure–function relationship 
is defined as the degeneracy of brain network organization 
[41, 42]. According to the degeneracy theory, although the 
different EM neural substrates are comparable in terms of 
maintaining EM output, each may respond differently to 
EM-related tasks and thus offer a unique target for natural 
selection and biological evolution [41]. The longitudinal 
design of this study facilitates differentiating the cognitive 
influence over time between the EM neural substrates. In the 
ε4 carriers, higher HFC in their variant EM neural correlates 

Fig. 1   Bilateral hippocampal functional connectivity (HFC) pat-
terns in each group. A warm color indicates positive functional con-
nectivity and a cool color indicates negative functional connectivity 
(p < 0.05, AlphaSim correction). The color bar presents Z Scores. 
NADS Nanjing Aging and Dementia Study, HFC hippocampal func-
tional connectivity, APOE apolipoprotein E

Fig. 2   Neural correlates of EM function in the left (A) and right (B) 
HFC networks from the NADS APOE ε3ε3 group and NADS APOE 
ε4 carrier group. A warm color indicates positive HFC correlation 
with EM function, while a cool color denotes negative HFC corre-
lation with EM function. The color bar presents Z Scores. R1 bilat-
eral thalamus/left medial temporal lobe, R2 bilateral dorsal medial 
prefrontal cortex/rostral anterior cingulate cortex, R3 left premotor 
cortex/sensorimotor cortex/superior parietal lobule, R4 left posterior 
middle temporal gyrus, R5 right premotor cortex/sensorimotor cor-
tex/superior parietal lobule, R6 bilateral cuneus/right middle tempo-
ral gyrus, R7 bilateral thalamus/medial temporal lobe/inferior tem-
poral gyrus/left lateral prefrontal cortex, R8 bilateral ventral/anterior 
medial prefrontal cortex, R9 bilateral premotor cortex/sensorimotor 
cortex/superior parietal lobule, R10 bilateral cuneus, NADS Nanjing 
Aging and Dementia Study, ADNI Alzheimer’s Disease Neuroimag-
ing Initiative, HFC hippocampal functional connectivity, EM episodic 
memory, APOE apolipoprotein E
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was associated with greater EM decline during the follow-
up period. By contrast, we did not observe any significant 
association between the HFC and longitudinal EM change in 
the ε3 homozygotes. These results indicate that the greater 
the ε4 carriers employ the variant EM neural correlates, the 
more rapid the EM decline later. From a neural system per-
spective, the variant EM neural correlates primarily involve 
the bilateral sensorimotor cortex. Recent evidence suggests 
Aβ deposition in the sensorimotor cortex as a key contribu-
tor to gait dysfunction that serves as a predictive symptom of 
the incidents of MCI and dementia at the preclinical stage of 
AD [43–45]. Our study suggests that the sensorimotor cortex 
contribution to AD development may also involve the EM 
domain, in which greater employment of the sensorimotor 
cortex for EM formation is detrimental to longitudinal EM 
performances in ε4 carriers.

Several strengths distinguish our study from other clinical 
studies in the field. First, we independently validated the pre-
dictive correlation between hippocampal hyperconnectivity 

and longitudinal EM decline in ε4 carriers. Low reproduc-
ibility becomes a major concern in the biomedical research 
community, as it undermines research significance in science 
and impedes development of translational medicine [46]. 
Independent validation could evaluate reproducibility and 
screen coincidental findings that reach statistical significance 
by chance. Although the correlation showed a trend in the 
ADNI dataset, we believe that the correlation would reach 
the significance level if the sample size becomes larger. The 
achieved independent validation could enhance our confi-
dence to apply the correlation in future AD prevention tri-
als. Second, the HFC measure is obtained from a nonin-
vasive and cost-effective MRI scan, and herein predicted 
EM decline over a short follow-up duration. These features 
suggest the HFC measure as a sensitive and easily applicable 
tool to screen CN individuals who should be referred for 
AD pathological biomarkers tests (i.e., Aβ and tau), which 
are invasive and more expensive. Third, HFC is a continu-
ous variable that might be better than categorical variables 
to assess the risk of EM decline. Subjects with very high 
HFC would exhibit greater EM decline relative to those with 
medium–high HFC.

Our findings should be considered with the following 
caveats. First, the obtained EM neural correlates patterns 
between the NADS and ADNI datasets, although were 
convergent in the absence of Papez circuit regions in the 
positive EM neural correlates, were not exactly identical. It 
suggests that the EM neural correlates were not determined 
by the APOE alleles alone, but may also be modulated by 
multiple factors such as age, education years, and cerebral 
amyloid load. Further studies should disentangle the impact 
of these factors on the EM neural correlates. Second, 55% of 
the subjects participated in the 3-year follow-up visit. The 
follow-up rate was slightly lower than that of other data-
sets [e.g., 64% of the 3-year follow-up rate in the National 

Fig. 3   Higher baseline HFC strengths in the EM neural correlates 
are associated with lower EM Scores during follow-up in the APOE 
ε4 carriers from both NADS (A) and ADNI (B) datasets. A, in the 
NADS APOE ε4 carriers, the mean HFC in the EM neural correlates 
at baseline was negatively correlated with the annual change in EM 

Composite Score. B, this negative correlation also showed a trend in 
the ADNI dataset. NADS Nanjing Aging and Dementia Study, ADNI 
Alzheimer’s Disease Neuroimaging Initiative, HFC hippocampal 
functional connectivity, EM episodic memory, APOE apolipoprotein 
E

Table 3   Multivariable regression analyses for variables predicting 
annual rate of change in EM Composite Score in the NADS ε4 car-
riers

HFCBL hippocampal functional connectivity strength at baseline, 
EMBL composite memory z-Score at baseline
*Indicates statistical significance

Variables Regression coefficients (95% CI) p value

Constant 0.33 (− 0.56 to 1.22) 0.44
HFCBL − 1.54 (− 3.05 to − 0.03) 0.05*
EMBL − 0.09 (− 0.26 to 0.08) 0.26
Sex 0.12 (− 0.04 to 0.29) 0.12
Age − 0.01 (− 0.02 to 0.01) 0.29
Education years 0.01 (− 0.02 to 0.04) 0.41
Family history − 0.01 (− 0.21 to 0.19) 0.90
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Alzheimer’s Coordinating Center Uniform Data Set (NACC 
UDS)] [47]. In addition, in the follow-up data, the NADS 
ε4 carrier group was significantly younger than the NADS 
ε3 homozygous group and the ADNI ε4 carrier group. The 
relatively low follow-up rate and the younger age in the 
NADS ε4 carrier group may bias the results found in this 
study. Third, all of the NADS ε4 carriers that participated 
in the follow-up study maintained normal cognitive function 
at follow-up. It remains unknown whether the high HFC 
contributes to conversion to mild cognitive impairment or 
dementia in ε4 carriers. Studies with longer follow-up dura-
tions are needed to demonstrate this contribution. Fourth, 
the subjects were asked to close their eyes during the resting-
state fMRI scan in this study. The reliability of the network 
connectivity when eyes closed would be relatively lower 
compared with that when eyes fixated on a cross [48]. The 
potential difference in reliability between different resting-
state conditions should be noted when comparing results 
among different datasets. Accordingly, after addressing these 
challenges, we expect to establish a degeneracy framework 
to measure an individual’s risk of cognitive impairment at 
the preclinical stage of AD.

In summary, our findings indicate that hippocampal 
hyperconnectivity in the variant EM neural correlates is 
associated with imminent EM decline in cognitively nor-
mal ε4 carriers, which may serve as a promising enrichment 
strategy for secondary prevention trials of AD. In addition, 
these findings may provide a supplementary tool to be used 
jointly with the established AD biomarkers to identify cog-
nitively normal ε4 carriers who are likely on the path to AD 
with a high sensitivity.
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